Importance measure analysis with epistemic uncertainty and its moving least squares solution
نویسندگان
چکیده
منابع مشابه
Importance measure analysis with epistemic uncertainty and its moving least squares solution
For the structural systems with both epistemic and aleatory uncertainties, in order to analyze the effect of the epistemic uncertainty on the safety of the systems, a variance based importance measure of failure probability is constructed. Due to the large computational cost of the proposed measure, a novel moving least squares (MLS) based method is employed. By fitting the relationship of para...
متن کاملStable Moving Least-Squares
It is a common procedure for scattered data approximation to use local polynomial fitting in the least-squares sense. An important instance is the Moving Least-Squares where the corresponding weights of the data site vary smoothly, resulting in a smooth approximation. In this paper we build upon the techniques presented by Wendland and present a somewhat simpler error analysis of the MLS approx...
متن کاملMoving Least Squares Coordinates
We propose a new family of barycentric coordinates that have closed-forms for arbitrary 2D polygons. These coordinates are easy to compute and have linear precision even for open polygons. Not only do these coordinates have linear precision, but we can create coordinates that reproduce polynomials of a set degree m as long as degree m polynomials are specified along the boundary of the polygon....
متن کاملMoving Least Squares Approximation
An alternative to radial basis function interpolation and approximation is the so-called moving least squares method. As we will see below, in this method the approximation Pf to f is obtained by solving many (small) linear systems, instead of via solution of a single – but large – linear system as we did in the previous chapters. To make a connection with the previous chapters we start with th...
متن کاملRank based Least-squares Independent Component Analysis
In this paper, we propose a nonparametric rank-based alternative to the least-squares independent component analysis algorithm developed. The basic idea is to estimate the squared-loss mutual information, which used as the objective function of the algorithm, based on its copula density version. Therefore, no marginal densities have to be estimated. We provide empirical evaluation of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2013
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2013.06.001